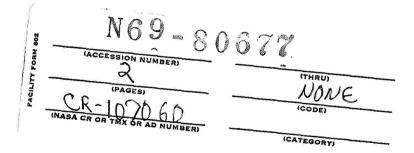
N80Y


Reprinted from IEEE Transactions on Electronic Computers, Vol. EC-15, No. 5, p. 799, October 1966

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

Technical Report 32-1040

The Self-Diagnosability of a Computer

Narsingh Deo

This paper presents the results of one phase of research carried out at the Jet Propulsion Laboratory, California Institute of Technology, under Contract No. NAS 7-100, sponsored by the National Aeronautics and Space Administration.

JET PROPULSION LABORATORY
CALIFORNIA INSTITUTE OF TECHNOLOGY
PASADENA, CALIFORNIA

The Self-Diagnosability of a Computer

NARSINGH DEO

Abstract-Maximum capability for self-diagnosis with minimum additional hardware is the goal of every designer of a general purpose computer today. A yardstick with which the self-diagnosability of a system can be measured is proposed.

A self-diagnosable computer can be described as a system consisting of two interconnected but independent machines: the main processor M_1 and a much smaller machine M_2 (about 5 to 10 percent of the size of M_1), which is capable of (programmatically) detecting and locating a fault in M_1 . This fault location should be pinpointed within a small number of replaceable modules (integrated circuit chips, parallel-plate packages, or printed circuit cards) [1], [2].

The most commonly employed technique for diagnosis is to prepare a list of a complete set of tests $T = \{T_1, T_2, \dots, T_n\}$ such that every failure in the system will cause one or more of these tests to fail [2]-[4]. Let the set $F = \{F_1, F_2, \dots, F_m\}$ represent all possible single failure cases in the system. By taking the intersection of the sets of suspects for the failing test cases T_{i1} , T_{i2} , \cdots , T_{ir} one arrives at a fault F_i . Let k_1, k_2, \cdots, k_m be the number of suspected modules under the faults F_1, F_2, \dots, F_m , respectively. In other words, during the Maintenance Routine [3] run, if tests T_{ii} , T_{i2}, \cdots, T_{ir} fail, and the rest of the tests pass, then from a look-up table we arrive at the conclusion that fault F_i has occurred, and in order to correct this fault F_i we have to either replace k_i number of modules or examine each of these k_i modules by some other means and replace the bad one.

Clearly then, if N = total number of modules used in the machine,

$$\sum_{i=1}^{m} k_i \ge N. \tag{1}$$

Let p_i be the probability of occurrence of failure F_i , for $i=1, 2, \cdots$, m. Then assuming that at a given instance exactly one fault has occurred.

$$\sum_{i=1}^{m} p_i = 1. \tag{2}$$

Number $R_i = 1/k_i$ is an indicator of the efficiency with which fault F_i can be repaired. The diagnostic efficiency of the entire system can be represented by

$$R = \frac{1}{\sum_{i=1}^{m} k_i p_i}$$
 (3)

This number R can be called the "resolution" of the entire system. The comparative figure of merit of a diagnostic subsystem is then

$$\frac{R}{\cos t}$$
 (4)

where the cost includes the cost of hardware in M_2 , of software, of development, and of running time of the maintenance routine.

If the maintenance routine only detects, and does not locate a fault, then R assumes its minimum possible value

$$R_{\min} = \frac{1}{N} \cdot \tag{5}$$

This implies that one has to examine all N modules of the machine to locate the faulty module.

The resolution R is maximum when every failure can be traced down exactly to one module, i.e. $k_i = 1$, for $1 \le i \le n$. Then from (3), resolution becomes

$$R_{\text{max}} = \frac{1}{\sum_{i=1}^{m} p_i} = 1. \tag{6}$$

If all modules are assumed to have equal probability of failure, then the probability of occurrence of failure F_i is given by

$$p_i = \frac{k_i}{\sum_{i=1}^{m} k_i} \tag{7}$$

and the resolution of the machine by substituting (7) in (3) turns out to be

$$R_{e} = \frac{\sum_{i=1}^{m} k_{i}}{\sum_{i=1}^{m} k_{i}^{2}} \cdot$$
 (8)

In absence of any statistical data available on the probability of various failures, (8) would be a good index of the diagnosability of a system.

In the author's opinion the resolution in (8) is a very important figure in the specification of any machine with diagnostic capability. The manufacturer should specify it, and the customer should ask for it. As discussed above, in general, Re will have a value between 1 and 1/N.

REFERENCES

- R. E. Forbes, D. H. Rutherford, C. B. Stieglitz, and L. H. Tung, "A self-diagnosable computer," Proc. F.J.C.C., vol. 27, pp. 1073-1086, November 1965.
 K. Malig and E. L. Allen, "A computer organization and programming system for automated maintenance," IEEE Trans. on Electronic Computers, vol. EC-12, pp. 887-895, December 1963.
 R. S. Ledley, Digital Computer and Control Engineering. New York: McGraw-Hill, 1960, pp. 135-139.
 J. M. Galey, R. E. Norby, and J. P. Roth, "Techniques for the diagnosis of switching circuit failure," IEEE Trans. on Communication and Electronics, vol. 83, pp. 509-514, September 1964.

Manuscript received June 2, 1966.
The author is with Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif. He was formerly with Burroughs Corporation, Pasadena, Calif.

Reprinted from IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS Volume EC-15, Number 5, October, 1966

P. 799 COPYRIGHT © 1966-THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, INC. PRINTED IN THE U.S.A.